

�

Root Cause Analysis

and its Role in Event Management

August 17, 1997

Identifying root cause problems in complex networked systems is a difficult, error-prone and time-consuming task. Each managed element can fail in many different ways, and each failure can propagate from the faulty element to other related network, system or application elements, making them appear faulty as well. As a result, it is estimated that more than 80% of downtime is spent trying to find problems, less than 20% is spent fixing them.

This paper introduces root cause analysis and explains its role in networked systems event management. It demonstrates that maintaining knowledge of cause-effect relationships between problems and symptoms is essential for analyzing the root cause of events, and compares several different approaches to event analysis with respect to their root cause analysis capabilities.

Root Cause Analysis in a Familiar Scenario

Suppose you arrive home one evening and find that the light in your front hallway isn’t on. You flick the switch, but nothing happens. Perhaps the bulb has burned out? Then you notice that the familiar glow of the clock on the table isn’t on either. Perhaps the breaker has tripped? As you explore further, you find that there appears to be no electricity anywhere in the house. Time to call an electrician? Then you look out the window and notice that none of the streetlights are on, and your neighbors’ houses seem dark, too. You thus infer that the root cause is in the power company.

This example highlights several points:

A single problem can give rise to many symptoms, some of which have propagated far from the source of the problem.

The root cause problem shares many symptoms with other possible causes: the bulb burning out, the breaker tripping, the electricity in the house out. The root cause is not obvious from looking at individual symptoms.

The root cause problem may in fact be unobservable. You don’t have access to the power plant equipment; all you can see are symptoms the problem has indirectly caused, and you must correlate them to draw the right conclusion.

Once the root cause has been identified, all the events caused by it are explained and need no further analysis.

You can now infer that other homes in your neighborhood that depend on the same power company will also lack power.

Enterprise Management Requires Root Cause Analysis

Root Cause Analysis is the process of analyzing the cause-effect relationships between events in complex systems. We will use a simple enterprise network as an example to illustrate various aspects of analyzing networked system events.

Our enterprise has UNIX servers running business critical applications, and Windows clients; servers and clients are interconnected via a TCP/IP network.

The enterprise network uses an SNMP network management system (NMS) to manage the IP network and a system management platform to manage the servers. The SNMP NMS periodically polls IP routers and router interfaces for their status, receiving a status_poll_failed event when a router or an interface has failed. The system management platform periodically polls server agents, receiving a server_agent_not_responding event when a server agent cannot be contacted.

Analyzing events in our enterprise network involves two major processes: Diagnosis and Impact Analysis.

Problem Diagnosis: if there is a problem in the system, it is necessary accurately identify its root cause and treat it in order to remove its effects. As in medicine, accurate diagnosis is key; incorrect diagnosis can lead to the wrong treatment, exacerbating the situation rather than improving it. For example, when receiving a storm of server_agent_not_responding events, the root cause problem could be in the servers that are not responding, or in the network path leading to them; each root cause problem requires different corrective action.

Problem Impact Analysis: Each root cause problem typically causes many events, both in the faulty component, and in other components related to it, directly or indirectly. It is important to identify the impacts of the root cause for several reasons:

Any event that is already explained by the root cause needs no further analysis -- it will go away when the root cause is treated. Spending time on it is wasteful. For example, once it has been determined that there is a faulty router interface, it will explain the storm of server_agent_not_responding events from servers downstream from this interface. The server events can thus be safely ignored.

Impact analysis determines what users and business processes are affected by the failure. This allows to proactively notify users, reassure them that the situation is under control, and invoke the appropriate fail-over procedures. For example, users of applications running on servers connected via the faulty interface can be notified that their applications will be unavailable for some time. For applications that supply data for real-time decision making, as in trading, the capability to distinguish between “no change” vs. “no information” is invaluable.

Requirements for Analyzing Failure Modes and Their Effects

We now examine the types of information required to support root cause analysis.

A fundamental requirement for Root cause analysis is knowledge of

The particular problems that can cause each event, and

The sequence of events that indicates each particular problem

This knowledge is difficult to acquire and maintain, because it involves two distinct areas of expertise:

A deep understanding of the failure modes and effects of each of the network, system and application components in the networked system, and

Knowledge of how these components are inter-related in each specific system at each point in time.

The analysis of events in our enterprise network must occur in three different scopes:

Intra-object Correlation

The first scope is the local scope of a single element, e.g., analyzing the data and events of each individual router. We refer to this as intra-object correlation. Sometimes, intra-object correlation suffices to diagnose the root cause, because there are enough local symptoms to uniquely identify problems. (This is obviously not the case for elements that are not monitored.)

Cross-object Correlation

The second scope is correlating events across different, but related, elements within a given domain. We refer to this as cross-object correlation. For example, the effects of a faulty router interface will spread to downstream routers, making them appear faulty as well. The need for cross-object correlation arises from the dependencies between elements in a domain, e.g., the relationships between routers and the interfaces they contain, or between router interfaces and downstream interfaces; events propagate from element to element along these relationships. Thus it is necessary to correlate results of polls across related routers and router interfaces to isolate the source of failure.

Cross-domain Correlation

The third scope is correlating events across management domains. We refer to this as cross-domain correlation. An example of cross-domain correlation is that of correlating lack of response from a server agent to a router failure. The need for cross-domain correlation arises from the dependencies between the network, the server, and the application domains. For example, applications depend on the servers they run on; servers depend on the network that connects them. Thus it is necessary to correlate results of polls of routers with polls of servers and applications to isolate the source of failure.

The Critical Role of Relationships

As we see from the above, both cross-object correlation and cross-domain correlation require understanding the relationships between managed elements in the domain, and across domains. Without knowing the relationship between router interfaces, it is impossible to trace lack of response to a poll to the correct fault. Similarly, without knowing that a particular application runs on a particular server, and that a particular server is downstream from a particular router, it is impossible to trace an application problem to the correct fault.

�

Analysis Capabilities in Event Management Systems

We’ll now turn our focus to the event analysis techniques implemented in commercial event management systems, and examine them with respect to their root cause analysis capabilities.

Event Filtering

We begin with the most rudimentary from of event processing: filtering. We use the term Event Filtering Systems to refer to event management systems that rely solely on the contents of event messages for their analysis.

Event messages typically include the identity of the element with which the event is associated, the identity of the specific event, time stamps, and other information characterizing the event, such as severity.

Since event filtering systems rely only on the information contents of event messages, the processing they can perform is limited to extracting information from messages, comparing extracted information with information from previous messages, editing messages, and discarding them. Examples of event filtering include: counting number of occurrences of an event, discarding duplicate event messages, discarding low severity event messages, or adding annotations to event messages.

Because they maintain no knowledge of the cause/effect relationships between events, filtering systems cannot perform root cause analysis. In our example enterprise network, an event filtering system could not have determined that the reason for server_agent_not_responding is a router interface failure.

Because of their limited analysis capabilities, filtering systems require users to manually develop and maintain scripts to process event logs. All the intelligence of the system is embedded in these ad-hoc scripts which take months to develop, and require considerable ongoing maintenance to keep them up to date. The system does not provide any structure to facilitate developing, executing, or maintaining these scripts. In a sense, scripts are the low end of rules.

Rule-Based Event Analysis

Rules-based event management systems go a step beyond filtering systems in that they maintain knowledge about the managed system as a collection of "if-then" or "condition-action" rules. The condition part of the rule determines whether the rule can be applied. The action part contains the conclusion which can be drawn from the rule when the condition is satisfied.

An example of a rule is:

IF server_agent_not_responding(serverA)

& upstream(router1, serverA) /* router1 is in the path to serverA */

& status_poll_failed(router1)

THEN down(router1)

The rules specifies that if serverA’s agent does not respond to a poll, and serverA is downstream from router1, and a status poll of router1 fails, then the root cause is a failure of router1.

The rules-based approach is quite intuitive and enables specifying cause-effect knowledge. However, there are several difficulties in developing a practical rules-based system for managing events of enterprise networks.

The first problem is developing the huge number of rules required for an enterprise network. For every event, there are many possible problems that could have caused it, both in the element sending the event, and in other elements that the sender depends upon. For example, the rule above obviously does not suffice to conclude that the root cause is in router1, since there could also be a failure of another router upstream from router1. Thus the complete rule would have to mention all routers upstream from router1, specifying that none of them fails to respond to a poll. A complete set of rules for root cause analysis would require rules for analyzing events of individual elements, rules for analyzing pairs of related elements, rules for triples, etc. -- number of rules is exponential in the number of managed elements, requiring years of development.

The second problem is maintaining all the rules. Since enterprise networks undergo frequent adds/moves/changes, and since changes invalidate some rules and necessitate some new ones, the rules need to be reprogrammed as frequently. For example, if serverA no longer depends on router1, the rule above, as well as other related rules, must be eliminated, and new rules pertaining to the routers and interfaces serverA now depends upon must be developed. Maintaining a rules-based system to perform Root Cause Analysis requires a full-time development staff.

The third problem is performance. Rules-based systems are slow because a large number of rules, i.e., all the rules in which an event appears, must be executed every time that event arrives.

The fourth problem is accuracy. Rules-based systems are very sensitive to delays or loss of events: a lost event can cause rules execution to follow the wrong path. For example, if the status_poll_failed event is lost in the example above, the problem could be misdiagnosed as a server problem rather than a router problem.

Thus, while the use of rules-based technology for root cause analysis initially appears very promising, in practice the limitations of this technology restrict its use to small systems which rarely undergo change.

Model-Based Event Analysis

Model-based systems maintain knowledge of the behavior of the system in formal models which can be reasoned about from first principles. This is the same approach used to analyze complex engineering systems such as satellites and nuclear reactors.

The model-based approach is the most systematic and scientifically sound approach to root cause analysis, but networked systems introduce new challenges to its application. Unlike conventional engineering systems which are closed systems whose components and the relationships between them are fixed, networked systems evolve dynamically, similar to organic systems which shed and grow parts. Elements are continually added, deleted, replaced, or moved. Thus, the key challenge in applying model-based techniques to networked systems is to develop a model-based approach that dynamically adapts as the system changes.

SMARTS patented Object-Oriented Diagnostic Modeling and Codebook Correlation technologies offer a breakthrough solution to these challenges.

Object-Oriented Diagnostic Modeling

Object-Oriented Diagnostic Modeling (OODM) models fault behaviors at the component level, yielding reusable object models. This is the only practical approach to modeling complex, dynamically changing systems. Trying to model fault behaviors at the system level is of combinatorial complexity and cannot adapt to changes.

An OODM class represents the diagnostic properties of a single type of managed element, e.g., a router, an SNA session, a server, a web application. The OODM class model extends the traditional OO class model by adding:

Events associated with this class,

E.g., the status_poll_failed event is associated with the class IP node, of which router and router_interface are a subclass.

Relationships between this class and other objects,

E.g., containment between a router and a set of interfaces, or layering between an application and the server it runs on.

Problems typical of elements of this class,

E.g., faulty_interface is a problem typical of the router_interface class.

Local effects of each problem,

E.g., the status_poll_failed event is a local symptom of faulty_interface

Propagated effects of each problem that affect related objects,

E.g., the status_poll_failed event propagates to interfaces that are in the downstream relationship to a faulty interface

Note that element class models are completely reusable. They capture only the invariant fault behaviors of managed elements, independent of any particular networked system. They are thus applicable to any network where this type of elements is used.

Codebook Correlation

Codebook correlation uses OODM models as described below

To compute the characteristic effects of each problem

To identify the root cause of monitored events

To compute the impacts of the identified root cause.

Once OODM models for managed classes are available, there is a simple, fast computation to automatically compute cause-effect relationships from these models and current inventory and topology. Inventory specifies what instances of elements currently exist in the network, and what OODM classes they belong to; Topology specifies how these instances are currently inter-related. Whenever inventory and topology change, new cause-effect relationships can be automatically recomputed.

The results of the above computation yield a characteristic signature for each problem, in terms of the effects it causes, both local and propagated.

Codebook Correlation uses these signatures to identify the root cause of events simply by matching monitored events to problem signatures. If there is a perfect match between the events and the signature of a particular problem, that problem is diagnosed with certainty 1. If there are several close matches, the corresponding problems are diagnosed with corresponding certainty levels (probabilities).

OODM and Codebook Correlation provide an ideal solution to the limitations of rules-based systems with respect to root cause analysis.

Using OODM, the number of models in the information base is proportional to the number of different types of elements. This number is typically in the tens, even for networks with hundreds of thousands of managed elements. Contrast this with the number of scripts or rules in a rule-base which is exponential in the number of elements.

The information required for root cause analysis is self-maintaining. Whenever inventory or topology change, cause effect-relationships are automatically recomputed. Whenever a new type of element is added to the networked system, only one new model needs to be loaded, and this can be done while the system is running.

Performance: Codebook Correlation is a super-fast table lookup matching incoming events to problem signatures. Its complexity is less than linear in the number of managed elements. Contrast with the number of rules that need to be executed for each event in a script or rule-based system.

Accuracy: Codebook correlation can tolerate a considerable amount of lost or delayed events, and even false alarms. The reason is the redundancy in the symptoms of each problem, and the mathematics of matching codes to events. For details, the reader is referred to [1, 2].

In addition, because OODM modeling starts from the problems that can occur in each type of element, and analyses their symptoms, guaranteeing coverage for all the relevant problems is straightforward: if there is a model describing the problem, the system is able to diagnose this problem and determine its impacts; otherwise it cannot.

In contrast, analyses that start from the events cannot enumerate all their possible root causes a-priori, because they depend on the particular topology in place at the time of occurrence of the event. They can guarantee coverage for a particular topology, but cannot guarantee coverage once even a single change in topology occurs.

Summary

We introduced root cause analysis as the process of analyzing cause-effect relationships in complex systems, and stressed its importance for automating networked system problem diagnosis and problem impact analysis.

We then examined the root cause analysis capabilities of event filtering systems, rules-based systems, and SMARTS Object-Oriented Diagnostic Modeling and Codebook Correlation, and showed that the latter currently offer the only practical implementation of root cause analysis in networked systems.

References

Kliger, S., Yemini, S., Yemini, Y., Ohsie, D., S. Stolfo “A Coding Approach to Event Correlation” In: Sethi, A., Raynaud, Y., Faure-Vincent, F. (editors). Fourth International Symposium on Integrated Network Management, Santa Barbara, CA May 1995. Chapman & Hall, pg. 266-277.

Yemini, S., Kliger, S., Mozes, E., Yemini, Y., and Ohsie, D. “High Speed and Robust Event Correlation” In: IEEE Communications Magazine, May 1996, pg. 82-90.

Ohsie, D., Mayer, A., Kliger, S., Yemini, S., “Event Modeling with the MODEL Language” In: Lazar, A., Sarracco, R., Stadler, R. (editors). Integrated Network Management V, San Diego, CA May 1997. Chapman & Hall, pg. 625-637.

�PAGE �6�

	

